Genome-wide SNP discovery in field and laboratory colonies of Australian Plutella species
نویسنده
چکیده
Understanding dispersal and gene flow is an important focus of evolutionary biology, conservation biology and pest management. The diamondback moth, Plutella xylostella, is a worldwide pest of Brassica vegetable and oilseed cropping systems. This insect has high dispersal ability, which has important consequences for population dynamics and the potential spread of insecticide resistance genes. Population genetic studies of the diamondback moth have found little evidence of population structure, suggesting that frequent intermixing occurs within regions, however the patterns of local and regional dispersal remain to be identified. For this and many other pest species, understanding dispersal is crucial for developing integrated management tactics such as forecasting systems and insecticide resistance management plans. In recent years, next generation sequencing (NGS) methods have provided previously unparalleled resolution for population genetic studies in a wide range of species. Here, we assessed the potential of NGS-derived molecular markers to provide new insights about population structure in the diamondback moth. We use restriction-site-associated DNA sequencing (RADSeq) to discover hundreds to thousands of single nucleotide polymorphism (SNP) markers in nine field and laboratory-reared populations collected from Australia. Genotypic data from RAD-Seq markers identified a cryptic species, P. australiana, among individuals collected from a wild host, Diplotaxis sp., indicating strong divergence in the nuclear genomes of two Australian Plutella lineages. Significant genetic differentiation was detected among populations of P. xylostella used in our study, however this could be explained by reduced heterozogosity and genetic drift in laboratory-reared populations founded by relatively few individuals. This study demonstrates that RAD-Seq is a powerful method for generating SNP markers for population genetic studies in this species.
منابع مشابه
A genome-wide scan to detect signatures of recent selection in Australian Merino sheep
Domestication and selection are processes that conserve the pattern of genetic diversities between and within populations. Identification of genomic regions that are targets of selection for phenotypic traits is one of the main aims of research in animal genetics. An approach for identifying divergently selected regions of the genome is to compare FST values among loci to estimate the genetic v...
متن کاملSingle Nucleotide Polymorphisms and Association Studies: A Few Critical Points
Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کامل